
Verifying B Proof Rules using Deep Embedding
and Automated Theorem Proving

Mélanie Jacquel1, Karim Berkani1, David Delahaye2, and Catherine Dubois3

1 Siemens SAS I MO, Châtillon, France,
Melanie.Jacquel@siemens.com
Karim.Berkani@siemens.com

2 CEDRIC/CNAM, Paris, France,
David.Delahaye@cnam.fr

3 CEDRIC/ENSIIE, Évry, France,
dubois@ensiie.fr

Abstract. We propose a formal and mechanized framework which con-
sists in verifying proof rules of the B method, which cannot be automat-
ically proved by the elementary prover of Atelier B and using an external
automated theorem prover called Zenon. This framework contains in par-
ticular a set of tools, named BCARe and developed by Siemens SAS I MO,
which relies on a deep embedding of the B theory within the logic of the
Coq proof assistant and allows us to automatically generate the required
properties to be checked for a given proof rule. Currently, this tool chain
is able to automatically verify a part of the derived rules of the B-Book,
as well as some added rules coming from Atelier B and the rule database
maintained by Siemens SAS I MO.

Keywords: B Method, Proof Rules, Verification, Deep Embedding, Au-
tomated Theorem Proving, Coq, Zenon.

1 Introduction

The B method [1], or B for short, allows engineers to develop software with high
guarantees of confidence; more precisely it allows them to build correct by design
software. B is a formal method based on theorem proving and emphasizing a
refinement-based development process. A typical scenario consists in first writing
high-level formal specifications as abstract machines, and then refining them
step by step into low-level sequential pseudo-code that can be automatically
translated into C or Ada programs. Proof is required to verify the correctness
of abstract machines (mainly ensuring the preservation of user-written invariant
properties) and the correctness of the refinement steps (roughly speaking, the
behavior is preserved by the refinement steps that introduce algorithmic decisions
or data representation choices). In practice, it means that the user must discharge
proof obligations. The Atelier B environment [8] is a platform that supports B
and offers, among other tools, both automated and interactive provers.

A famous and significant use of B and Atelier B has concerned the control
system of the driverless Meteor line 14 metro in Paris (opened 13 years ago).

Since Meteor, Siemens SAS I MO has generalized its use of B for building other
critical systems, e.g. the communication-based train control systems of the New
York City Canarsie line. On both cases, a huge number of proof obligations
(27,800 obligations for Meteor) had to be handled manually (using the interactive
prover). In fact, most of them were proved by adding new proof rules (1,400 rules
for Meteor) that the automated provers can exploit. Even today, many projects
developed at Siemens SAS I MO still require to add new proof rules.

These new proof rules must of course be proved correct, otherwise the proof
process is invalid. The proof of these proof rules is done by the elementary prover
provided by Atelier B, which does not use any of them. Some of the added rules
(900 rules in the Meteor case) can be proved by the Atelier B elementary prover,
some of them cannot and are then proved manually by experts.

The main point in this approach is to prove the proof rules, basic or added
ones. Currently, the proof rule database of Atelier B used at Siemens SAS I MO
contains about 5,300 proof rules, 2,900 of which can be proved automatically by
the elementary prover. The problem raised here is not to question the confidence
into the Atelier B elementary prover, but to prove the proof rules that are not
automatically proved and that must be proved manually. The latter process
is tedious, long, and error-prone. We propose to replace it by a mechanized
verification with the help of a more powerful Automated Theorem Prover (ATP),
a first order one, e.g. Zenon [5]. In order to increase confidence in this external
verification, it is important to be able to check the proofs done automatically, and
furthermore to be able to connect them with the inference rules of the underlying
B logic [1]. Thus, our approach is not only to use an external prover, but also to
rely on a proof assistant which checks the generated proofs, i.e. Coq [15].

However, as Coq is not fully automated and may require human interaction,
we propose to use Coq only to describe the B underlying logic and to serve
as a proof verifier for the proofs delegated to the ATP. The expected results
for a B proof rule will be, in case of success, a proof in the B logic (or, more
technically, a Coq proof term encoding it). Some years ago, a first experiment
using Coq has been conducted at Siemens SAS I MO to verify the Atelier B
proof rules (see [3]), but it required human interaction and all the proofs done
in Coq were done manually. However, this first manual attempt allowed us to
handle 274 proof rules proved manually by experts and considered by the authors
as representative ones. The methodology consisted in playing the manual proofs
within Coq: 7 valid proof rules had incorrect proofs but the proofs could be given
properly within Coq, and 13 rules were not valid because of lack of hypotheses
about variable non-freeness. This discovery were important for the design of the
verification platform presented in this paper, namely BCARe.

BCARe is a set of tools developed by Siemens SAS I MO to verify added proof
rules. It contains tools to check if a proof rule is correctly protected by non-
freeness assumptions, to typecheck a rule, and to prove a rule (by using Coq and
Zenon). One of the main objectives of BCARe is to assist the experts to find proofs
of proof rules, but the development standards used at Siemens SAS I MO expect
these experts to give their final assessment. BCARe contains a deep embedding

of the B logic within Coq, that is an encoding of the B formulas and inference
rules into the Coq logic, namely the calculus of inductive constructions. Other
embeddings [4, 6, 7, 12] of B have been implemented with different purposes in
related work. For example, BiCoq [12] is a deep embedding of B in Coq. Like
BCARe, BiCoq follows scrupulously the B-Book [1]; however, the former uses
names whereas the latter uses De Bruijn indexes.

Some experiments like [9, 14, 10] concern automated verification of B proof
obligations with ATPs or SMT solvers. We are interested in proof rules and not
in proof obligations. Furthermore, as we do want the best degree of confidence
in our mechanical proofs, it is essential to rely on an ATP able to provide proof
traces checkable by a proof checker, e.g. Coq. Zenon is one of the ATPs able to
provide several output proof formats, one of which is a Coq script that will be
adapted to give us a proof using the B logic.

The paper is organized as follows: in Section 2, we first present the several
steps required to verify B proof rules; we then introduce, in Section 3, the BCARe
environment, which is a mechanized support for the verification of proof rules;
finally, in Section 4, we describe our experiments for automating the verification
proofs and provide some benchmarks concerning derived rules and added rules
coming from Atelier B and the rule database maintained by Siemens SAS I MO.

2 Rule Verification in Atelier B

In this section, we present the notion of proof rules of Atelier B, together with the
several steps required to ensure their verification, i.e. the steps which guarantee
that the application of such rules does not introduce inconsistencies.

2.1 The B Set Theory

The B method [1] aims to assist experts to develop certified software. The initial
step is defined with abstract properties of a model. Several steps of property
refinement are then applied until the release of the complete software. A re-
finement step is characterized by adding details on the software behavior under
construction. For each step, generated proof obligations must be demonstrated.

The B method is based on a typed set theory. There are two rule systems:
one for demonstrating that a sentence is well-typed, and one for demonstrating
that a sentence is a logical consequence of a set of axioms. The main aim of
the type system is to avoid inconsistent sentences, such as Russell’s paradox for
example. The B proof system is based on a sequent calculus with equality. Six
axiom schemes define the basic operators and the extensionality which, in turn,
defines the equality of two sets. In addition, the other operators (∪, ∩, etc) are
defined using the previous basic ones.

2.2 The Atelier B Proof Assistant

Proofs Atelier B [8] is a tool, developed by ClearSy, that implements the B
method. Once a model is specified, its correctness is ensured by several mecha-

nisms. The first one is typechecking, which is fully automated. If no error occurs
during typechecking, then the proof obligations can be generated. They repre-
sent the properties that must be proved to verify the mathematical correctness
of the model compared with its properties. A proof system helps the developer
make the corresponding demonstrations.

These proof obligations can be demonstrated automatically with a tactic of
the Atelier B proof assistant. When this tactic fails, an interactive proof mode
can be used. In this proof mode, the user can apply tactics on the goal and/or on
the hypotheses to complete his/her proof. A tactic is an ordered list of theories
(a theory is basically a container of rules), that determines the traversal of a rule
base to determine if one or several rules can be applied.

Rules We distinguish two kinds of rules in Atelier B: deduction and rewrite rules.
The former is of the form A1 ∧ . . . ∧An ⇒ B, where the Ai are the antecedents
(guards or predicates) and B the consequent (predicate). Guards are used to add
some conditions to the use of the rule. A deduction rule can be used in both back-
ward and forward ways. A rewrite rule is of the form A1 ∧ . . . ∧An ⇒ B == C,
where the Ai are the antecedents (guards or predicates) and where B and C
are either expressions or predicates. The binary symbol “==” is the syntactic
replacement: if B matches a subterm of the goal, then it is replaced by the cor-
responding instance of C. More precisely, the syntax of rules is defined as follows:

V := I | V 7→ V
E := V | [V := E]E | E 7→ E | choice(S) | S
S := S × S | P(S) | {V |P} | BIG | I
P := P ∧ P | P ⇒ P | ¬P | ∀V.P | [V := E]P | E = E | E ∈ S | I
A := P | I \ P | I \ E | binhyp(P) | blvar(I) | A ∧A
C := P | E == E | P == P
R := C | A⇒ C

where V represents the variables (in which I denotes the identifiers), E the
expressions, S the sets, P the predicates, A the antecedents, C the consequents,
and R the rules. Regarding guards, we only consider the non-freeness predicates
(I \P and I \E), as well as the binhyp and blvar guards, where binhyp(P) checks
the presence of P in the proof context and blvar(I) instantiates I with the bound
variables at the rewrite point. We are also able to deal with more complicated
guards that we will not present in this paper. Furthermore, free variables may
occur in E, S, and P ; these variables are considered as metavariables (for pattern-
matching). As for the other logical connectives (such as ⇔, ∨, and ∃) and set
operators (e.g. ∪, ∩, etc), they are defined from those given above.

Let us illustrate the two previous kinds of rules with some examples of added
rules coming from Atelier B.

Example 1 (Deduction Rule). ForAllX.3: (a \A) ∧A = ∅ ⇒ ∀a.a /∈ A
If used in a backward way, this rule can be applied on a goal if a is non-free in A
and if the current goal matches the consequent ∀a.a /∈ A. It therefore generates
the goal A = ∅ to be proved.

Example 2 (Rewrite Rule). SimplifyRelDorXY.2:
binhyp(f ∈ u+→ v) ∧ binhyp(a ∈ dom(f)) ∧ blvar(Q) ∧ (Q \ (f ∈ u+→ v)) ∧
(Q \ (a ∈ dom(f)))⇒ {a}C f == {(a 7→ f(a))}
This rule can be applied on a goal if there are some hypotheses of the context
matching f ∈ u+→ v and a ∈ dom(f), a term of the goal matching {a}C f , and
if the quantified variables at the rewrite point do not appear in u, v, a, and f .

Rule Verification The verification of a rule is carried out in four steps:

1. The first step only deals with rewrite rules and consists in verifying that
rewrite rules are correctly protected against variable capture. This is due
to the fact that Atelier B does not verify the context of application when
applying a rewrite rule and applies it in a purely syntactical way. As a
consequence, when a rewrite rule is applied under binders and involves bound
variables, variable capture may occur and lead to inconsistencies.

2. The second step aims to verify that the rule is well-formed, which amounts
to typechecking the rule according to the B typing rules (see [1]). However, a
rule may contain metavariables whose type may be left implicit. Therefore, a
preliminary step is required to first infer the types of all metavariables such
that the rule enriched with these type constraints can be typechecked.

3. The third step consists in verifying that the rule is well-defined. In [2], it
is pointed out that conditional definitions may lead to some ill-defined ex-
pressions, such as division by zero or the application of a function to an
argument lying outside its domain. A syntactical filter to be applied to the
rule is proposed and contains all the well-definedness proof obligations.

4. The last step must verify that the rule can be derived using the B proof rules
(see [1]). It is possible to do so over a rule, after applying another syntactical
filter, defined in [2] in particular, in order to remove the proof obligations
related to well-definedness.

3 The BCARe Environment

In this section, we present the BCARe environment, which is developed by
Siemens SAS I MO, and which proposes a formal and mechanized framework
for verifying B proof rules.

3.1 Rationale for Designing BCARe

Currently, an automated tool is used at Siemens SAS I MO for verifying the
rules developed with Atelier B. However, when a proof fails, the rule is verified
manually without the help of any proof assistant. The first aim of the BCARe
environment, developed by Siemens SAS I MO, is to overcome this problem. For
example, in the rule ForAllX.3, a \ A must be verified before the application of
the rule. It is possible to check that the previous condition is necessary with
BCARe, while it is impossible to do so with the other available tools. Thus, the

BCARe environment has been essentially developed to deal with the rules whose
correctness cannot be automatically established. The scope of this environment
is currently a subset of the B set theory (propositional and first order logics,
basic set theory operators, functions, generalized and quantified intersections
and unions). Some other features, such as induction, are being integrated.

The different steps of a rule verification with BCARe follows the several steps
defined in Section 2. If the rule is a rewrite rule then a tool checks that its
guards correctly protect the free variables (see Subsection 3.3). Another tool
then infers types for the rule using a type inference algorithm which has been
defined regarding the B typing rules (see [1]), after which the typing lemma
can be generated (see Subsection 3.4). Finally, this tool also generates the well-
definedness lemma, as well as the lemma corresponding to the rule itself (See
Subsections 3.5 and 3.6). Once these three lemmas are generated, their proofs
must be completed. The generation of these lemmas and the corresponding proofs
are realized using the Coq proof assistant [15]. In particular, this relies on an
environment, called BCoq, which is an embedding of the B set theory in Coq
(see Subsection 3.2). The proofs of these lemmas can be partially automated,
and Section 4 describes our approaches regarding the automation of these proofs.

3.2 The BCoq Embedding

The generation of the previous lemmas is realized within the BCoq environment,
which is a deep embedding of the B set theory in Coq, and where the B operators,
as well as the deduction systems for types and proofs, are specified inductively
(see [3]). Compared to a shallow embedding, the advantage of such an approach
is that the correctness of a type or proof derivation is provided by construction.

The BCoq syntax is defined in Coq as follows (we do not provide the Coq
concrete syntax, but only an abstraction of this syntax written with “ .”):

.

V :=
.

I |
.

V
.7→

.

V
.

E :=
.

V | [
.

V :
.
=

.

E]
.

E |
.

E
.7→

.

E |
.

choice (
.

S) |
.

S
.

S :=
.

S
.
×

.

S |
.

P (
.

S) | {
.

V
.

|
.

P} |
.

BIG |
.

I
.

P :=
.

P
.
∧

.

P |
.

P
.⇒

.

P |
.¬

.

P |
.

∀
.

V .
.

P | [
.

V :
.
=

.

E]
.

P |
.

E
.
=

.

E |
.

E
.
∈

.

S |
.

I

where
.

I,
.

V ,
.

E,
.

S, and
.

P respectively represent the reified versions of the
several sets of terms I, V , E, S, and P , defined in Section 2.

In this grammar, there is no syntax for rules, as they are intended to be reified
into predicates. However, there are still metavariables (free variables occurring in
.

E,
.

S, and
.

P). The reification process is performed by using the set of functions
J · KX , where X ∈ {V,E, S, P,A,C,R}, and which are defined in Figure 1. In this
process, the sets of metavariables are computed, and these metavariables are then
bound by means of shallow binders. The names of binders are managed using
shallow binders as well, in order to deal with α-conversion and skolemization
in particular (see Subsection 3.4). In the same way, the non-freeness guards are
reified and kept in the term using shallow non-dependent products.

JI1KV = (I2, {(I1, I2)}), where I2 /∈ V ∪ B, and B ← B ∪ {I2}
JV1 7→ V2KV = (V ′

1
.7→ V ′

2 , {B1 ∪B2}), where (V ′
1 , B1) = JV1KV and (V ′

2 , B2) = JV2KV

JI1KbV =

{
I2, if (I1, I2) ∈ b
I1, otherwise andME ←ME ∪ {I1}

JV1 7→ V2KbV = JV1KbV
.7→ JV2KbV

JV1KbE = JV1KbV J[V1 := E1]E2KbE = [V2 :
.
= JE1KbE]JE2Kb∪BE , where (V2, B) = JV1KV

JE1 7→ E2KbE = JE1KbE
.7→ JE2KbE JS1KbE = JS1KbS

JS1 × S2KbS = JS1KbS
.
× JS2KbS JP(S1)KbS =

.

P (JS1KbS)
J{V1|P1}KbS = {V2

.

| JP1Kb∪BP }, where (V2, B) = JV1KV
JI1KbS = I1, andMS ←MS ∪ {I1} if I1 /∈ b

JP1 ∧ P2KbP = JP1KbP
.
∧ JP2KbP JP1 ⇒ P2KbP = JP1KbP

.⇒ JP2KbP
J¬P1KbP =

.¬ JP1KbP J∀V1.P1KbP =
.

∀ V2.JP1Kb∪BP , where (V2, B) = JV1KV
J[V1 := E1]P1KbP = [V2 :

.
= JE1KbE]JP1Kb∪BP , where (V2, B) = JV1KV

JE1 = E2KbP = JE1KbP
.
= JE2KbP

JE1 ∈ S1KbP = JE1KbE
.
∈ JS1KbP JI1KbP = I1, andMP ←MP ∪ {I1} if I1 /∈ b

JP1KA = JP1K∅P JI1 \ P1KA = >, and N ← N ∪ JI1K∅V
.

\ JP1K∅P if I1 /∈ R
JI1 \ E1KA = >, and N ← N ∪ JI1K∅V

.

\ JE1K∅E if I1 /∈ R
Jbinhyp(P1)KA = JP1K∅P Jblvar(I1)KA = > with R← R∪ {I1}

JA1 ∧A2KA =

JAiKA, if JAjKA = > with (i, j) = (1, 2) or (2, 1)
>, if JAiKA = > with i = 1, 2

JA1KA
.
∧ JA2KA, otherwise

JP1KC = JP1K∅P JE1 == E2KC = JE1 = E2K∅P JP1 == P2KC = JP1K∅P
.⇔ JP2K∅P

JA1 ⇒ C1KR =

{
∀x ∈M,B,N .JC1K∅C , if JA1KA = >
∀x ∈M,B,N .JA1KA

.⇒ JC1K∅C , otherwise

JC1KR = ∀x ∈M,B,N .JC1K∅C

V is the set of variables of the initial rule.
ME/S/P is the set of metavariables of expressions, sets, and predicates.
M is the set of metavariablesME ∪MS ∪MP .
B is the set of bound variables.
N is the set of non-freeness hypotheses of the initial rule.
R is the set of variables bounded by the guard blvar.
∀x ∈M,B,N .T ≡
∀x∈MEx ∈

.

E.∀x∈MSx ∈
.

S.∀x∈MP x ∈
.

P .∀x∈Bx ∈
.

I.N1 → . . . → Nn → T ,
where N = {N1, . . . , Nn} and T is a reified term.

Fig. 1. Reification of the Atelier B Rules

The BCoq environment also provides the reified relations “
.

`” and “
.

`τ ”, re-
spectively for proof and typing judgments (see [1]).

3.3 Rewrite Rule Verification

As said in Section 2, Atelier B does not verify the context of application when
applying a rewrite rule and applies it in a purely syntactical way. Therefore, when
a rewrite rule is applied under binders and involves bound variables, variable
capture may occur and lead to inconsistencies. For instance, let us consider the
rewrite rule binhyp(x = a) ⇒ x == a and the goal n = 0 ` ∀n.n ∈ N ⇒ n = 0.
This goal is trivially false, but the rewrite rule can be applied, which leads to
the goals n = 0 ` ∀n.n ∈ N ⇒ 0 = 0 and n = 0 ` n = 0. These two goals
can be completed and an inconsistency is then introduced (due to the capture
of variable n in hypothesis by the binder of the conclusion).

To avoid variable capture, a first solution is to prevent us from performing
rewriting under binders when bound variables are involved. Considering a rewrite
rule of the form G ∧ A ⇒ E == F , where G is the conjunction of the guards,
A the conjunction of the antecedents (other than guards), and E and F two
expressions, this corresponds to the following criterion:

blvar(Q) ∧Q \ (E = F) (1)

Using this criterion, the previous rewrite rule binhyp(x = a) ⇒ x == a is
then rejected as the variables x and a are not protected. To be correct, this rule
must be of the form binhyp(x = a) ∧ blvar(Q) ∧Q \ x = a⇒ x == a.

However, this criterion is a little too restrictive as it prevents us from defining
some useful rewrite rules. For instance, the rewrite rule s∩ t == t∩ s is rejected
by this criterion whereas this rule cannot generate variable capture.

To accept this kind of rewrite rules, a second solution consists in allowing
rewriting to be performed under binders only if the bound variables involved do
not occur in the antecedents. More precisely, this criterion is defined as follows:

blvar(Q) ∧Q \ (G ∧A) (2)

With this criterion, the corrected rule and the other rule are both accepted.
However, criteria (1) and (2) are complementary, and we use both of them as it
allows us to accept more rules. Both criteria have been formally verified in [13].

3.4 Rule Typechecking

As seen in Section 2, it is required to verify that a rule is well-formed, which
amounts to typechecking the rule according to the B typing rules (see [1]). How-
ever, a rule may contain metavariables whose type may be left implicit. For
example, in the rule a ∪ b = b ∪ a, the types of a and b are unknown. The B
type system does not allow us to infer types for metavariables occurring in rules.
It only allows us to check that a predicate is well-typed when all the types are
explicit. Therefore, we have to first infer a type for all metavariables.

To do so, we define a type inference system, which is described in Figure 2.
The different rules correspond to the core language described in Subsection 3.2
and deal with reified rules. There are also some dedicated rules for other logical
connectives and set operators, but they are not presented in this paper due to
space restrictions. This type inference system is aimed to find types for variables
of expressions (bound or not) and metavariables of sets, but not for metavari-
ables of predicates which cannot be typechecked using the B typing rules. This
is possible if metavariables of sets are not distinguished from variables of expres-
sions, and in the following, a variable will denote either a variable of expression
(bound or not), or a metavariable of set.

First, the algorithm assigns a unique type variable to each variable and all
these variables with their types are gathered in a typing context Γ . The type in-
ference tree is then built according to the rules of Figure 2. Some constraints may
appear during this step due to some non-linearity constraints (for instance, see
the rule “ .=”). Once the tree is closed, the algorithm tries to solve the constraints.
If it succeeds, the types of variables of Γ are updated with their instantiations.

Before generating the corresponding typing lemma, it is necessary to generate
new hypotheses of non-freeness without which this lemma cannot be proved in
general, as skolemization cannot be performed when eliminating binding terms.
This is realized by means of the following operator:

SU,V (T) = N1 → . . . → Nn → T

where T is a reified term, and for all u ∈ U , for all v ∈ V such that u 6= v

and u
.

\ v /∈ N , then there exists i ∈ 1 . . . n such that Ni = u
.

\ v.
Finally, for a reified rule of the form ∀x.M,B.N ⇒ P and from the resulting

typing context Γ , the typing lemma can be generated as follows:

∀x.x ∈M,B,N .SB,B∪MΓ
(G,H

.

`τ
.

check (P))

where:M←M′
E ∪M′

S ∪MP withM′
E ←ME ∪MS andM′

S ←MΓ ,
whereMΓ is the set of type variables of Γ ; G is the reification of the types of Γ
such that for all (v, t) ∈ Γ and v /∈ B,

.
given (t) ∈ G (in which

.
given (t) means

that t is the super-set of itself); H is the reification of the typing context Γ such
that for all (v, t) ∈ Γ and v /∈ B, Jv ∈ tKP ∈ H.

3.5 Well-Definedness Verification

As said in Section 2, it is pointed out in [2] that conditional definitions may
lead to some ill-defined expressions, such as the application of a function to an
argument lying outside its domain. Thus, a syntactical filter to be applied to the
rule to prove is proposed in [2], and contains all the proof obligations related to
well-definedness. The filter is called L and is defined as a function over reified
rules. The computation rules of this function are split into two sets of rules:
decomposition and atomic rules. The decomposition rules are the following:

Rules for V

x : s, Γ ` x : s
var

Γ ` x : s Γ ` y : t

Γ ` x .7→ y : s
.
× t

.7→V

Rules for E

Γ ` x : t Γ ` E : t

Γ ` x :
.
= E : Sτ

:
.
=

Γ ` x :
.
= E : Sτ Γ ` F : t

Γ ` [x :
.
= E]F : t

substE

Γ ` x : s Γ ` y : t

Γ ` x .7→ y : s
.
× t

.7→ E

Γ ` s :
.

P (t)

Γ `
.

choice (s) : t

.

choice

where Sτ is the type of substitutions.

Rules for S

Γ ` S :
.

P (s) Γ ` T :
.

P (t)

Γ ` S
.
× T :

.

P (s
.
× t)

.
×

Γ ` E :
.

P (s)

Γ `
.

P (E) :
.

P (
.

P (s))

.

P

x : s, Γ ` P : Pτ

Γ ` {x
.

| P} :
.

P (s)
{
.

|}
Γ `

.

BIG :
.

P (
.

BIG)

.

BIG

Rules for P

Γ ` P : Pτ Γ ` Q : Pτ

Γ ` P
.
∧ Q : Pτ

.
∧

Γ ` P : Pτ Γ ` Q : Pτ

Γ ` P .⇒ Q : Pτ

.⇒

Γ ` P : Pτ

Γ ` .¬ P : Pτ

.¬
Γ ` x : t Γ ` P : Pτ

Γ `
.

∀ x.P : Pτ

.

∀

Γ ` x :
.
= E : Sτ Γ ` P : Pτ

Γ ` [x :
.
= E]P : Pτ

substP
Γ ` E : t Γ ` F : t

Γ ` E .
= F : Pτ

.
=

Γ ` E : t Γ ` S :
.

P (t)

Γ ` E
.
∈ S : Pτ

.
∈

where Pτ is the type of predicates.

Fig. 2. Type Inference Rules

L(∀x ∈M,B,N .P) = ∀x ∈M,B,N .L(P)
L(P

.
∧ Q) = L(P)

.
∧ (P

.⇒ L(Q)) L(P .⇒ Q) = L(P)
.
∧ (P

.⇒ L(Q))

L(.¬ P) = L(P) L(
.

∀x.P) =
.

∀x.L(P)
The atomic rules essentially aim to deal with applications of functions and

handle atomic predicates, i.e. every predicate other than those considered above.
The atomic rules are defined as follows:

L(A) =
.

true

L(Af(E)) =
.

∃(s .7→ t).(f
.
∈ s

.
+→ t

.
∧ E

.
∈

.

dom(f))
.
∧

.

∀y.(y .
= f(E)

.⇒ L(Ay))
where y /∈M∪ B, and B ← B ∪ {y}

L(A
{x
.

|x
.
∈S

.
∧P}

) =
.

∀x.(L(x
.
∈ S)

.
∧ (x

.
∈ S .⇒ L(P)))

.
∧

.

∀y.(y .
= {x

.

| x
.
∈ S

.
∧ P} .⇒ L(Ay))

where x, y /∈M∪ B, and B ← B ∪ {x, y}

in which an atomic predicate may be of the following form:

1. A, where f(E), {x
.

| x
.
∈ S

.
∧ P} /∈ A;

2. Af(E), where f(E) ∈ Af(E), but g(F), {x
.

| x
.
∈ S

.
∧ P} /∈ f,E;

3. A
{x
.

|x
.
∈S

.
∧P}

, where {x
.

| x
.
∈ S

.
∧ P} ∈ A

{x
.

|x
.
∈S

.
∧P}

.

The binding rules, i.e. the rules for atomic predicates of the form (3) must
be applied first, before the rule for atomic predicates of the form (2), in order to
avoid to eliminate applications of functions under binders.

Compared to [2], our approach relaxes the restrictions over the super-set S in
the atomic predicate for comprehension sets, which implies to add the recursive
call L(x

.
∈ S) in the corresponding rule. In addition, we are also able to deal with

substitutions (for expressions and predicates), as well as lambda-expressions (we
do not provide the corresponding rules here in order to simplify our presentation).

Once this filter has been applied to a reified rule of the form ∀x ∈M,B,N .P ,
the well-definedness lemma to be proved is generated as follows:

∀x ∈M,B,N .SB,B∪MΓ
(H

.

` L(P))

whereMS ←MS ∪MΓ .

3.6 Rule Verification

Once the proof obligations related to well-definedness have been extracted from
the rule by means of a first syntactical filter, it is possible to apply another filter
to the rule, which eliminates the conditional definitions unconditionally and pro-
duces an equivalent rule simpler to prove. This new filter, which is introduced
in [2], is called E , and is defined as a function over reified rules, which uncon-
ditionally eliminates all the applications of functions. Considering the L filter

seen previously, it can be shown that L(P) .⇒ (P
.⇔ E(P)). In the same way

as for the L filter, the computation rules of E are split into two sets of rules:
decomposition and atomic rules. The decomposition rules are the following:

E(∀x ∈M,B,N .P) = ∀x ∈M,B,N .E(P) E(P
.
∧ Q) = E(P)

.
∧ E(Q)

E(P .⇒ Q) = E(P) .⇒ E(Q) E(.¬ P) = .¬ E(P) E(
.

∀x.P) =
.

∀x.E(P)
The atomic rules are defined as follows:

E(A) = A

E(Af(E)) =
.

∀y.((E, y)
.
∈ f .⇒ E(Ay)) where y /∈M∪ B, and B ← B ∪ {y}

E(A
{x
.

|x
.
∈S

.
∧P}

) =
.

∀y.(y = {x
.

| x
.
∈ S

.
∧ E(P)} .⇒ E(Ay))

where y /∈M∪ B, and B ← B ∪ {y}

Once this filter has been applied to a reified rule of the form ∀x ∈M,B,N .P ,
the rule lemma to be proved is generated in the following way:

∀x.M,B,N .SB,B∪MΓ
(H

.

` E(P))

whereMS ←MS ∪MΓ withMΓ the set of the type variables of the typing
context Γ , and where H is the reification of Γ .

3.7 Examples

In the following, we describe two examples of rule verification using BCARe.

Example 3 (Verification of ForAllX.3). This rule is a deduction rule, and there
is no need to verify that there is no variable capture. As there is no application
function, only the typing and rule lemmas are generated as follows:

Lemma type_ForAllX3 : f o ra l l t :
.

S , f o ra l l A a :
.

V ,

a
.

\ (A, t)→
.

given (t), A
.

⊆ t
.

`τ
.

check (A
.
=

.

∅ .⇒
.

∀ a.a
.

/∈ A) .

Lemma rule_ForAllX3 : f o ra l l A t :
.

S , f o ra l l a :
.

V ,

a
.

\ (A, t)→ A
.

⊆ t
.

` (A
.
=

.

∅ .⇒
.

∀ a.a
.

/∈ A) .

Example 4 (Verification of SimplifyRelDorXY.2). This rule is a rewrite rule,
and we must verify that the guards correctly protect the free variables. As the
elements of Q do not belong to {f, u, v, a}, the criterion (2) is verified. The three
lemmas are then generated in the following way:

Lemma type_SimplifyRelDorXY_2 :
f o ra l l t1 t2 :

.

S , f o ra l l a f u v :
.

V ,
.

given (t1),
.

given (t2), u
.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

`τ
.

check (f
.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒ {a}

.
C f

.
= {a .7→ f(a)}) .

Lemma wdef_SimplifyRelDorXY_2 :
f o ra l l f t1 t2 u v :

.

S , f o ra l l a :
.

E , f o ra l l s t :
.

V ,

s
.

\ (t, f, u, v, a, t1, t2)→ t
.

\ (s, f, u, v, a, t1, t2)→
u

.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

`
f

.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒
.

∃(s .7→ t).(f
.
∈ s

.
+→ t

.
∧ a ∈

.

dom(f)) .

Lemma rule_SimplifyRelDorXY_2 :
f o ra l l f t1 t2 u v :

.

S , f o ra l l a :
.

E , f o ra l l y :
.

V ,

y
.

\ (f, u, v, t1, t2, a)→ u
.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

`
f

.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒
.

∀y.((a, y)
.
∈ f .⇒ {a}

.
C f

.
= {a .7→ y}) .

4 Automated Verification of Proof Rules

In this section, we discuss some solutions that we have provided to automate
the verification of proof rules in the framework of the BCARe environment. In
particular, the several solutions aim to automatically prove the different lemmas
generated in Coq from proof rules by BCARe. To do so, we have developed a set of
tactics using the Ltac tactic language of Coq [11]. In the specific case of the rule
lemma, we have also considered an alternative approach based on an external
ATP called Zenon [5]. Both approaches are able to deal with rules involving
all the set operators defined before the functional abstraction (introduction of
anonymous functions) in the B-Book [1].

4.1 Verification using Ltac

To deal with the different lemmas generated in Coq from proof rules by the
BCARe environment (see Section 3), a set of tactics has been developed using
the Ltac tactic language of Coq [11]. Regarding the proof of the typing lemma,
we have designed a correct and complete tactic (the B typechecking is decidable),
which essentially performs pattern-matching over the goal in order to select the
appropriate B typing rules. As for the proof of well-definedness lemma, we have
written another tactic, which is able to manage only specific cases. This tactic
mostly looks for instantiations which allow us to complete the proof using a
direct propositional combination of the current hypotheses. Finally, the proof
of the rule lemma is handled by means of a tactic which relies on a naive and
incomplete heuristic, even though it succeeds in proving about 200 derived rules
of the B-Book. This heuristic mainly consists in only considering Skolem symbols
when instantiating (no unification is performed), while right contraction is never
used. In addition, this tactic has also some efficiency issues in some cases that
can be observed in Subsection 4.3. To palliate these several drawbacks, we have
developed an alternative approach based on the use of an external ATP, able
to provide a more powerful and efficient proof search procedure, and able to be
easily interfaced with Coq (i.e. producing proof traces that can be exploited).

4.2 Verification using Zenon

As an alternative approach to Ltac tactics, we have developed an interface with
the Zenon ATP [5], in order to prove the rule lemmas in particular. One of the
main difficulties when using an external ATP is to bring together the B set theory
and the ATP logic. As seen previously, the B set theory [1] is actually based on
a simplification of classical set theory. As for Zenon, it relies on the classical
first order logic with equality (using the tableau method as proof search), and
does not deal explicitly with the set theory. The idea consists in normalizing
the formula to be proved (unfolding definitions), in order to obtain a first order
logic formula containing only the “

.
∈” (reified) set operator. This formula is then

syntactically interpreted within the ATP logic, in which the “
.
∈” operator is

considered as a regular uninterpreted predicate symbol.
Another difficulty is to ensure the correctness of the external deduction. We

have adopted a skeptical approach by building B proofs from the proofs produced
by the ATP. In this way, it is possible to check the validity of these proofs that
have been automatically found. However, this requires the ATP proof traces
to be comprehensible enough so as to allow us to reconstruct proofs. This is
the case of Zenon, which produces several proof traces at different levels. In
particular, it produces Coq proofs, which can be used to build proofs within the
BCoq embedding of BCARe (see Section 3). To do so, the Coq proofs generated
by Zenon have to be (re)reified. This translation is syntactical and relies on an
embedding of each tactic occurring in the Coq proofs produced by Zenon.

4.3 Benchmarks

In the following, we present the results of our implementation using Zenon on
several examples of proof rules. This implementation actually consists of a Coq
tactic written in OCaml. We also compare these results to those obtained using
the corresponding Ltac tactic. To realize these benchmarks, we have tested both
tactics on derived rules of the B-Book, as well as on several added rules coming
from Atelier B and the database maintained by Siemens SAS I MO.

Regarding derived rules, we have considered about 200 rules and the results
of the tests (run on an Intel Pentium D 3.40GHz/4GB computer) are summarized
in the graph of Figure 3, where a point represents the test of a proof rule and
where the x-axis and y-axis respectively correspond to the Ltac and Zenon proof
times (expressed in seconds). In this graph, we only consider derived rules for
which the proof times for Ltac and Zenon are less than 30s (this corresponds
to about 66% of the tested rules). We can see that Zenon is faster than the
Ltac tactic for the most part of the tested rules (for 71% of these rules, more
precisely). Furthermore, over the 200 rules for which Zenon succeeds in finding a
proof, 15 rules cannot be proved using the Ltac tactic. For the sake of scalability,
we have also tested our tactics on added rules coming from Atelier B and the
database maintained by Siemens SAS I MO. We have selected 1279 rules (over a
total of 5039 rules) within the scope of both tactics. For these rules, Zenon can
prove 813 rules (64%), whereas the Ltac tactic manages to prove 498 rules (39%).

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ltac

Z
en

o
n

0

5

10

15

20

25

30
0 5 10 15 20 25 30

Fig. 3. Proof Times of Rule Lemmas using Zenon and Ltac

In addition, the larger the Ltac proof time is, the larger is the number of rules
for which Zenon is faster than Ltac. These several experimental results tend to
show that the use of Zenon is an approach which is not only more satisfactory
than that of Ltac, but also very promising in terms of scalability.

5 Conclusion

We have proposed a formal and mechanized framework which allows us to verify
proof rules of the B method, and which is able to use an external automated
theorem prover called Zenon. This framework relies on the BCARe set of tools,
developed by Siemens SAS I MO, which provides a deep embedding of the B
theory within the logic of the Coq proof assistant and allows us to automatically
generate the required properties to be checked for a given proof rule. Currently,
this tool chain is able to automatically verify about 200 derived rules of the
B-Book, as well as 800 added rules coming from Atelier B and the rule database
maintained by Siemens SAS I MO.

As future work, we first aim to completely verify the derived rules of the
B-Book. The BCARe environment is already able to deal with all these derived
rules, but the automated verification part (using Zenon) has to be adapted. In
particular, this part has to be extended to manage proofs of properties involving
applications of functions, substitutions, arithmetics, induction, and sequences.
It seems clear that all the proofs will not be able to be automated, and our goal
consists in automating at least a large part of them and characterizing the lack
of automation for the other proofs. To palliate this potential lack of automation,

we could consider alternative ATPs (other than Zenon) or SMT solvers, which
might be more appropriate for some specific properties. In this case, we should
develop a verification platform able to use several provers and solvers. Once these
derived rules have been verified, we plan to deal with the rest of the added rules
of Atelier B (about 1,400 rules), and thereafter the rest of those of the database
developed by Siemens SAS I MO (about 3,100 rules). If the latter focuses on the
development of applications, the former consists in certifying Atelier B as a tool
used in a safety-critical and high-integrity chain of production.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. J.-R. Abrial and L. Mussat. On Using Conditional Definitions in Formal Theories.
In Formal Specification and Development in Z and B (ZB), volume 2272 of LNCS,
pages 317–322, Grenoble (France), Jan. 2002. Springer.

3. K. Berkani, C. Dubois, A. Faivre, and J. Falampin. Validation des règles de base
de l’Atelier B. Technique et Science Informatiques (TSI), 23(7):855–878, 2004.

4. J.-P. Bodeveix, M. Filali, and C. Muñoz. A Formalization of the B-Method in Coq
and PVS. In B Users Group Meeting, Toulouse (France), Sept. 1999.

5. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated
Theorem Prover Producing Checkable Proofs. In Logic for Programming Artificial
Intelligence and Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151–165,
Yerevan (Armenia), Oct. 2007. Springer.

6. P. Chartier. Formalisation of B in Isabelle/HOL. In B Conference, volume 1393 of
LNCS, pages 66–82, Montpellier (France), Apr. 1998. Springer.

7. H. Cirstea and C. Kirchner. Using Rewriting and Strategies for Describing the
B Predicate Prover. In Strategies in Automated Deduction, pages 25–36, Lindau
(Germany), July 1998.

8. ClearSy. Atelier B 4.0, Feb. 2009. http://www.atelierb.eu/.
9. J.-F. Couchot, F. Dadeau, D. Déharbe, A. Giorgetti, and S. Ranise. Proving and

Debugging Set-Based Specifications. In Workshop on Formal Methods, volume 95
of ENTCS, pages 189–208, Campina Grande (Brazil), Oct. 2003. Elsevier.

10. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In Abstract State Machines, Alloy, B and Z (ABZ), volume 5977 of LNCS,
pages 217–230, Orford (Canada, QC), Feb. 2010. Springer.

11. D. Delahaye. A Tactic Language for the System Coq. In Logic for Programming
and Automated Reasoning (LPAR), volume 1955 of LNCS/LNAI, pages 85–95,
Reunion Island (France), Nov. 2000. Springer.

12. É. Jaeger and C. Dubois. Why Would You Trust B? In Logic for Programming
Artificial Intelligence and Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages
288–302, Yerevan (Armenia), Oct. 2007. Springer.

13. É. Le Lay. Automatiser la validation des règles. Master’s thesis, INSA (Rennes),
Siemens SAS I MO, Sept. 2008.

14. L. Mikhailov and M. Butler. An Approach to Combining B and Alloy. In Formal
Specification and Development in Z and B (ZB), volume 2272 of LNCS, pages
140–161, Grenoble (France), Jan. 2002. Springer.

15. The Coq Development Team. Coq, version 8.3. INRIA, Oct. 2010.
http://coq.inria.fr/.

